RESPECT OF SKIN MICROBIOME WITH A MICELLAR SOLUTION, AN ECOBIOLOGICAL APPROACH

Callejon S.¹, Giraud F.¹, Larue F.², Buisson A.², Matéos L.¹, Grare L.¹, Guyoux G.¹, Perrier E.^{1,3}, Ardiet N.², and Trompezinski S.¹

¹NAOS, Research and Development Department, Aix-en-Provence, France ³NAOS Institute of Life Science, Aix-en-Provence, France ³NAOS Institute of Life Science, Aix-en-Provence, France ³NAOS Institute of Life Science, Aix-en-Provence, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS Institute of Life Science, Aix-en-Provence, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Development Department, Lyon, France ³NAOS, Cutaneous Investigation and Research and Resea

INTRODUCTION

Skincare products are used daily to maintain a healthy skin (cleansing, moisturizing, protecting...), but their impact on the skin microbiome, corresponding to the first layer of the skin, is still poorly understood. Preserving natural resources and mechanisms of the skin ecosystem is essential; an original approach based on this postulate, called ecobiology, has recently emerged in skincare. Ecobiology considers the skin as an ever-evolving ecosystem which hosts human and microbial cells that interact together with their environment. In this context, we investigated the impact on the skin microbiome diversity and abundance of a micellar solution, a daily cleansing and leave-on skin care product.

The micellar solution respects the microbial biodiversity (Shannon, richness and distribution) which is essential to maintain the natural protection of the skin against pathogens, the skin barrier function and to prevent or offset skin disorders. A micellar solution formulated according to the skin microbiome's balance over several days of application.

MATERIALS AND METHODS

Subject recruitement:

- 20 healthy subjects
- 23 to 48 years old

Sample collection and sequencing:

- Cheek swabs Collection at day 0 and day 24/28 Illumina Miseq (2x300)
- 16S V1-V3 region

Experiment protocol:

- Daily use (2x/day) micellar solution
- Randomized treated vs. untreated area

Diversity analysis:

- Number of OTU (Operational Taxonomic Unit) Shannon Index
- 12 main bacterial genera on the skin
- 10 main bacterial families on the skin

bacterial distribution after 24/28 days of application.

observed No distribution d		bacterial gen
		Cheek 1
	Acetobacteraceae -	•
Unkown	Corynebacteriaceae -	•
Staphylococcus Streptococcus	Enterobacteriaceae -	•
Neisseria Roseomonas Sphingomonas	Micrococcaceae -	•
Haematobacter Micrococcus	Neisseriaceae -	
Enhydrobacter Escherichia/Shigella	Propionibacteriaceae -	
Corynebacterium Cutibacterium	Rhodobacteraceae -	•
nus	Sphingomonadaceae -	•
	Staphylococcaceae -	•
	Streptococcaceae -	•

