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Beyond the genome: protecting the proteome may 
be the key to preventing skin aging

Skin aging is associated with a progressive decline in physiological 
functions, skin cancers and, ultimately, death. It may be categorized as 
intrinsic or extrinsic, whereby intrinsic aging is attributed to chrono-
logical and genetic factors. At the molecular level, skin aging involves 
changes in protein conformation and function. The skin proteome 
changes constantly, mainly through carbonylation; an irreversible 
phenomenon leading to protein accumulation as toxic aggregates 
that impair cellular physiology and accelerate skin aging. This review 
details the central role of proteostasis during skin aging and why 
proteome protection may be a promising approach in mitigating skin 
aging. A comprehensive literature review of 87 articles focusing on 
the proteome, proteostasis, proteotoxicity, protein carbonylation, and 
the impact of the damaged proteome on aging, and in particular skin 
aging, was conducted. Skin aging is associated with deficiencies in the 
repair mechanisms of DNA, transcriptional control, mitochondrial 
function, cell cycle control, apoptosis, cellular metabolism, changes 
in hormonal levels secondary to toxicity of damaged proteins, and 
cell-to-cell communication for tissue homeostasis, which are largely 
controlled by proteins. In this context, a damaged proteome that 
leads to the loss of proteostasis may be considered as the first step in 
tissue aging. There is growing evidence that a healthy proteome plays 
a central role in skin and in maintaining healthy tissues, thus slow-
ing down the process of skin aging. Hence, protecting the proteome 
against oxidative or other damage may be an appropriate strategy to 
prevent and delay skin aging.
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A
lthough research regarding skin aging mainly 
focuses on aesthetic aspects, skin alteration 
caused by aging is more than a merely cosmetic 

issue [1-5]. Cutaneous aging is a complex biological phe-
nomenon consisting of two distinct components: intrin-
sic genetically determined aging processes and extrinsic 
aging due to exposure to environmental factors, such as 
UV radiation and pollution [6-8].
Physiological changes in aged skin include structural and 
biochemical alterations, as well as changes in neurosen-
sory perception, permeability, response to injury, and 
repair capability, which increase in some skin diseases, 
among them, skin cancer. In 2015, the World Health 
Organization World Report on Aging and Health 
emphasized the necessity to develop strategies dealing 
with aging, and the skin was identified as a domain that 
deserves greater attention [9].
In 2013, Lopez-Otin et al. first proposed the concept of 
biological geriatric assessment (BGA). This was updated 
in 2023 and includes 12 hallmarks considered as the 
denominators of aging including that of skin. These 
include genomic instability, telomere attrition, epigenetic 
alterations, loss of proteostasis (protein homeostasis), 

disabled macro-autophagy, dysregulated nutrient 
sensing, mitochondrial dysfunction, cellular senescence, 
stem cell exhaustion, altered intercellular communica-
tion, chronic inflammation, and dysbiosis.
The proteome includes all proteins present in an 
organism or cell, and control of the proteome is referred 
to as “proteome homeostasis” or “proteostasis”. The 
proteome plays an essential role in all life forms since 
proteins, directly or indirectly, carry out all life func-
tions. In the human body, proteins represent the second 
most abundant constituent after water [10]. However, 
to date, only modest attention has been devoted to 
proteome alterations in studies on aging.
In a recent publication, a focus was given to the role of 
the proteome in aging, including that in the skin as well 
as age-related diseases [11]. The present review provides 
a focus on skin aging with relevant information about 
the proteome, and moreover details arguments in favour 
of the proteome as a potential central target in the 
strategy of prevention and management of skin aging 
that encompasses other well-known pathways of skin 
aging.
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Methodology

A comprehensive review of 87 articles available from 
PubMed was conducted. Focus was given on aging, the 
proteome, proteostasis, the proteasome, protein carbon-
ylation and BGA, as well as its hallmarks: genomic insta-
bility, telomere attrition, epigenetic alterations, loss of 
proteostasis, dysregulated nutrient sensing, mitochon-
drial dysfunction, cellular or immune senescence, stem 
cell exhaustion, and altered intercellular communication 
in dermatology using the above key words, either alone 
or combined with each other.

Results

In the skin, as in any other body tissue or cell, proteins 
are involved in each of the aging hallmarks stated by 
Lopez-Otin et al., consistent with the dependence of 
nearly all life functions on dedicated protein activities 
[12, 13].

Protein turnover
Protein turnover involves protein degradation (proteol-
ysis) and resynthesis to maintain and regulate protein 
activity and remove abnormal (most frequently caused 
by oxidative damage), dysfunctional or cytotoxic 
proteins. In young tissues, damaged proteins are effi-
ciently eliminated by selective proteolysis, thus avoiding 
dysfunction and cytotoxic effects of oxidized small 
aggregates, called “oligomers” [14, 15].
Natural protein degradation is performed via the ubiq-
uitin-proteasome system (UPS), an enzymatic complex 
dedicated to protein degradation which is present in all 
cells [16-19].
Protein quality control (PQC), involving multiple chap-
erones and degradative pathways, identifies and elimi-
nates abnormal and misfolded proteins susceptible to 
carbonylation, that are deleterious to cells and tissues 
[20]. If PQC fails, then protein aggregation may occur. 
A certain number, but not all, of these aggregations are 
eliminated via autophagy [5, 21-23]. Thus, during aging, 
these protein aggregates accumulate in tissues, promoting 
the development of chronic inflammation.
In the skin, protein damage mostly results from external 
stimuli, including exposure to oxidants present in air 
pollution, ozone, chemical agents and radiation, such as 
UV light [24-29]. Moreover, protein damage can be 
caused through internally generated oxidants and reac-
tive oxygen and nitrogen species, which are produced 
during metabolism or immune responses [30, 31]. 
Finally, protein damage can occur due to transcriptional 
or translational errors, since misfolded proteins become 
sensitive to carbonylation [32, 33]. Such biosynthetic 
errors can occur naturally, but become more prevalent 
with age due to a deficient feedback loop between accu-
mulating damage and transcriptional and translational 
efficacy and fidelity [34].

Skin aging is a permanent process
Skin and tissue aging via protein damage is  
mainly caused by protein glycation (figure 1A), carbon-
ylation (figure 1B) and, to a lesser extent, through 
carbamylation.
The accumulation of advanced glycation end products 
(AGEs), protein carbamylation and protein carbonyla-
tion (PC) products has been causally associated with 
skin aging [35-37].

Protein glycation
During protein glycation, AGEs are derived from the 
modification of proteins or lipids that are glycated by 
reducing sugars [38-40]. They modify cell structure and 
extracellular matrices, which also results in the release 
of free radicals [41]. AGE accumulation in the dermis 
results in yellow, discoloured skin. Collagen cross‐links 
reduce flexibility and mobility, resulting in the loss of 
skin elasticity [41-46]. AGEs also induce strong nuclear 
factor‐κB activation and cause inflammation in the skin 
via pro‐inflammatory cytokines [44, 47].

Figure 1. Protein damage via glycation or carbonylation. A) 
Glycation. B) Carbonylation.
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Unlike irreparable carbonylation, glycation is subject to 
efficient repair by Parkinsonism-associated Protein 
DJ-1/Park7 (DJ-1/PARK-7 deglycase) [48].

Protein carbonylation (PC)
PC forms reactive ketones or aldehydes [49]. It causes 
irreversible oxidative damage, frequently resulting in the 
loss of protein function and protein aggregation [50].
In the skin, PC results in several distinguishable clinical 
changes. Transepidermal water loss is increased in the 
stratum corneum [51-53]. In the supra-basal epidermis, 
the accumulation of carbonylated keratins disrupts light 
transmission, which alters subjectively perceived skin 
radiance and homogeneity of skin complexion [54, 55].
Carbonylated proteins alter the dermis by degrading 
collagen and elastin. PC is associated with an alteration 
of fibroblasts, as well as changes in the expression of 
metalloproteases, such as MMP-1, and the development 
of chronic inflammation involving IL-8 [56-59].

Protein carbamylation
Protein carbamylation is a non-enzymatic modification 
which involves the binding of isocyanic acid to protein 
functional groups. This reaction alters the structure and 
function of proteins, resulting in protein damage and 
chronic inflammatory diseases [37].

Proteins as markers of skin aging 
A recent quantitative proteomic analysis identified a 
total of 95 differentially expressed proteins (DEPs) in 
aged skin, compared to young skin. An enrichment anal-
ysis of 57 upregulated and 38 downregulated proteins 
showed different functional clusters related to immunity 
and inflammation, oxidative stress, biosynthesis  
and metabolism, proteases, cell proliferation and 
 differentiation, as well as apoptosis [60]. The most rele-
vant up-regulated proteins in aged skin samples were 
galectin-3-binding protein and demicidin (both involved 
in the immune and inflammatory response), serpin B6 
(a protease inhibitor), mucin-like protein 1 (a signal 
transduction related protein), melanotransferrin (a metal 
ion-containing protein), and the following proteins 
involved in cell apoptosis, as well as cell proliferation 
and differentiation: glypican-1, prelamin-A/C, 
syntening-2 and annexin A2. The most relevant 

down-regulated proteins were keratin type I cytoskeletal 
15 and 39, keratin type II cytoskeletal 72, as well as 
keratin type I cuticular Ha5 and keratin type II cuticular 
Hb2. Other down-regulated proteins included cyto-
plasmic histidine-tRNA ligase and cytoskeleton-related 
protein and extracellular matrix protein 1. Moreover, 
glyceraldehyde-3-phosphate dehydrogenase, that regu-
lates biomolecular interactions and post-translational 
modifications according to its subcellular localization, 
was found to be down-regulated [61].
Alterations of numerous proteins have been reported in 
tissue aging [60, 62]. Certain proteins that are very 
 sensitive to ROS are more prominently related to BGA 
(table 1).
Partial inhibition of the proteasome, a highly sophisti-
cated protease complex, in young human fibroblasts 
accelerates cell senescence via the p53/Rb-dependent 
pathway, suggesting that the age-related decline in 
proteasome activity participates in human fibroblast 
senescence and, possibly, skin aging [68]. The age-related 
loss of proteasome activity in dermal fibroblasts is linked 
to the induction of matrix metalloprotease 1 (MMP-1 
or collagenase-1) and decreased cell respiration  
[58, 69, 70].

Discussion

This literature review provides arguments to support the 
loss of proteostasis and proteome damage as central 
actors in skin aging, affecting and interacting with all 
other BGA hallmarks (figure 2) [71].
Aging is mainly driven by deficiencies in important 
cellular processes, such as DNA repair and stability, 
mitochondrial function, cell cycle control and apoptosis, 
cellular metabolism, changes in hormonal levels, and the 
communication between all the counterparts [72]. All 
these mechanisms are coordinated by the proteome. 
Therefore, in the skin, as in any other tissue, a damaged 
proteome and the resulting loss of proteostasis may be 
considered the first step, the root cause, of cellular 
dysfunction, leading to disease and aging.
In the skin, sustaining proteostasis is challenging in the 
context of external and internal stressors. During aging, 
these stressors trigger a progressive decline in the integ-
rity of the proteostasis network, leading to visible signs 
of skin aging, such as dry and thinned skin, wrinkles and 

Table 1. Proteins that are very sensitive to ROS and more prominently related to BGA.

Protein Characteristics Role

Telomerase Ribonucleoprotein structure that comprises two 
parts: a functional RNA component and a catalytic 
reverse transcriptase component. 

Telomerase preserves the length of 
telomeres by highly charged histone-like 
proteins [63].

Sirtuins Protein deacetylases associated with aging. Sirtuins are involved in chronic inflamma-
tion and nutrient sensing [62, 64].

Connexins Tetraspan transmembrane proteins that form gap 
junctions.

Connexins enable direct intercellular 
communication [65, 66].

Mitochondrial transcription 
factor A (TFAM)

Essential mtDNA packaging protein that is required 
for mtDNA replication and transcription.

TFAM mediates the maintenance of 
mitochondrial DNA integrity [67].
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pigmentation. Therefore, the balance between protein 
synthesis and degradation is essential in maintaining the 
youthful appearance of the skin, reflecting the healthy 
biochemical state of cells.
Until recently, much of the research has focused on the 
protection and repair of DNA and genes that control 
and prevent cell and tissue aging. However, since 
proteins repair DNA and provide antioxidant protec-
tion, it is no surprise that, for example, extreme resist-
ance to radiation is achieved by the antioxidant 
protection of the proteome, rather than by effects of the 
genome [14]. Hence, protecting the proteome against 
oxidative, or other damage may be an appropriate 
strategy to prevent and slow down skin aging.
Interestingly, it has recently been shown that very 
resistant bacteria, named “polyextremophilic bacteria”, 
are able to survive following exposure to intense ionizing 
and UV irradiation, as well as hydrogen peroxide, acid, 
extreme temperatures and desiccation. Such robustness 
has been identified in relation to their capacity to safe-
guard their proteome by strong antioxidant small chap-
erone-like endogenous molecules, protecting proteins 
from carbonylation [73, 74]. Even if their DNA is exten-
sively damaged, their physiology remains unaffected, 
which is due to highly efficient DNA repair by a well-pro-
tected intact proteome, providing extreme radiation 
resistance. The physiology of this bacteria offers new 
perspectives in skin aging, opening the door to in vivo 
protection of the proteome against carbonylation, aggre-
gation and degradation induced by external factors. 
Acting at the root of the cause of aging and its hallmarks 
should be the most effective way to mitigate the biolog-
ical consequences of aging.
Several therapeutic approaches have been proposed to 
prevent or delay skin aging. However, they usually 

address only one specific aging hallmark, and thus 
induce only a mild effect on aging. Most of them target 
glycation, and some carbonylation, in the skin [75-77]. 
Among such treatments are: plant extracts, zinc, resver-
atrol derivatives and antioxidant vitamins; the aryl 
hydrocarbon receptor (AHR), a nuclear receptor that 
modulates the response to environmental stimuli and 
may activate innate immunity; aquaporin 3, which has 
been shown to reduce long-term UVA-induced senes-
cence in skin fibroblasts by promoting autophagy; 
natural antioxidants, which exhibit redox-balancing 
and/or iron-chelating properties; and peptides with 
notable effects on chronologically aged and/or 
photo-damaged skin [76, 78-87].
This review of the literature provides strong arguments 
in favour of proteome damage being the root cause of 
aging, indicating the importance to develop strategies to 
protect proteins before they are degraded. Furthermore, 
protecting the skin proteome from oxidative damage by 
small chemical antioxidant chaperones promises to miti-
gate the majority of biological consequences of skin 
aging. Such proteome-protecting molecules exist in 
bacteria, accounting for their extreme radiation resist-
ance. The use of such molecules in the form of a topical 
application to the skin represents a challenge in the 
management of aging, but if successful, could provide a 
new approach for both prevention and slowing down of 
skin ageing in the near future.

Conflicts of interest: Brigitte Dréno and Miroslav 
Radman receive funds from NAOS Les Laboratoires, 
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of Naos-ILS.

Figure 2. Impact of loss of proteostasis on BGA hallmarks during skin aging (adapted from Tuttle et al. [71]).
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